気象衛星ひまわりの品質評価に おける衛星シミュレータの利用

気象庁 気象衛星センター 村田英彦

2015/03/27 第8回気象庁数値モデル研究会 「数値予報を用いた衛星観測シミュレーション」

はじめに

- ・衛星データの定量的な利用には、十分な品 質評価が必要。
- さまざまな参照データと比較して、品質特性を把握する。
- ・衛星シミュレータは、直接的、または間接的に利用できる。
- 気象衛星ひまわりの品質評価を例に

- ひまわり8号の初期評価等

日本の静止気象衛星「ひまわり」の歴史

GMS (Geostationary Meteorological Satellite)

Jul 1977

(Himawari-4)

Sep 1989

GMS-4

Station for GMS was operated by Australian Bureau of Meteorology

One of the tri-Ranging

(GOES-9)

Back-up operation of GMS-5 with GOES-9 by NOAA/NESDIS May 2003 - June 2005

, 142017/1	ı Aulti funo	tional Tranco	۱ مrt CA	Tallia	(\mathbf{a})
MTSAT-1R (Himawari-6)	MTSAT-2 (Himawari-7)	uonai <u>r</u> iansp	011 <u>3A</u>		
essi	emel co	l Himaw	Himaw vari-8 H	' ari Iimaw	vari-9
Feb 2005	Feb 2006	201	14	201	6

Satellite	Observation period
GMS	1977 – 1981
GMS-2	1981 – 1984
GMS-3	1984 – 1989
GMS-4	1989 – 1995
GMS-5	1995 – 2003
GOES-9	2003 – 2005
MTSAT-1R	2005 – 2010
MTSAT-2	2010 –
Himawari-8	Launch in 2014
Himawari-9	Launch in 2016

ひまわり8号 経過と予定

- 2014年
 - 10/07 : 打ち上げ
 - 10/16 : 東経140.7度に静止化
 - 12/18 : 初画像公開
- 2015年
 - 3月末 : 軌道上試験の終了
 - 夏頃 :運用開始

(年度)	H17	H18 I	H19	H20	H21	H22	H23	H24	H25	H26	H27	H28	H29	H30	H31	H32	H33	H34	H35	H36	H37	H38	H39	H40	H41
	2005					2010					2015					2020					2025				
運輸多目的衛星新1号 ひまわり6号	1		観測				1	待機																	
運輸多目的衛星新2号 ひまわり7号			待機			11.		観測			()()	機													
静止地球環境観測衛星 ひまわり8号				_ 括	∫ <mark>衛星</mark>	製作			打	ΈÅ	-4-		1	観浿	J						待機				
ひまわり9号				調	<mark>衛星</mark>	製作					Į.	- 19		待機	***						観測				待機
				~							·														4

可視赤外放射計 Advanced Himawari Imager (AHI)

	MTSAT-2	ひまわり8号・9号					
パンド	波長帯	波長帯	空間 分解能				
1		0.47 μm	1km				
2		0.51 µm	1km				
3	0.68 µm	0.64 µm	0.5km				
4		0.86 µm	1km				
5		1.6 µm	2km				
6		2.3 µm	2km				
7	3.7 μm	3.9 µm	2km				
8	6.8 µm	6.2 μm	2km				
9		6.9 µm	2km				
10		7.3 μm	2km				
11		8.6 µm	2km				
12		9.6 µm	2km				
13	10.8 µm	10.4 µm	2km				
14		11.2 μm	2km				
15	12.0 µm	12.4 µm	2km				
16		13.3 μm	2km				

MTSAT-2相当 のバンド

品質評価の局面

- ・衛星打ち上げ後の初期評価
 - 衛星の観測機能を確認
 - 処理アルゴリズム不具合改修
- 運用開始後の系統的誤差
 - 経年劣化、季節変化、日変化、特性変質
 - 補正して使用する目的
 - 気候目的の長期データセット
- 突発的な異常の検出
 - 階調異常、迷光など
 - 異常を報知する目的

品質評価手法いろいろ / とは較する

手法	可視 近赤	赤外	時間 分解能	空間 分布	精度	即時性	備考
他の静止衛星の似たセンサーと 直接比較	可	可					<mark>応答関数の違いを考慮</mark> する 必要あり。
極軌道衛星の似たセンサーと直 接比較	可	可					<mark>応答関数の違いを考慮</mark> する 必要あり。場所と時間が限ら れる。
極軌道衛星のハイパースペクトルセン サーで応答関数を再現して比較	?	可					場所と時間が限られる。
統計値で比較(発達した積乱雲)	可	?		×		×	<mark>応答関数の違いを考慮</mark> する 必要あり。長期トレンド用
数値予報モデルを入力とした <mark>シミュレーション画像</mark> と比較	可	可					数値予報モデルの誤差を考 慮する必要がある。
他の衛星等でリトリーブしたパラ メータを使って作成した シミュレー ションデータ と比較	可	?					雲パラメータを極軌道衛星か らリトリーブ。場所と時間が限 られる。
月観測	可	?		×		×	月観測データが必要。 長期ト レンド用。
太陽光拡散板	可	/		×		×	ひまわり8号に搭載。 常時観測は出来ない。

他にも手法はあると思います。

赤字:衛星シミュレータ(放射伝達モデル)の利用場面 7

衛星シミュレータ(放射伝達モデル)

用途:

シミュレーション値(計算値)と観測値を比較する。 応答関数の違いを考慮する。

数値予報モデルを入力としたシミュレーション画像(RSTAR)

シミュレーション画像を用いた品質モニター(案)

他の衛星でリトリーブしたパラメータを使って作成した シミュレーションデータと比較 (MTSAT-2の可視チャンネルの例)

dslope [%]

2010

2

8.0

0.6

2011

Slope : 1.1711 Intercept : -0.0036

- 較正テーブルを再作成する目的で、静止衛星観 測値を、RSTARによる放射伝達計算を介した計算 値で値付けする。
- 可視チャンネルの観測輝度範囲を網羅するため 様々な輝度のターゲットを採用
 - ✓ 晴天海面
 - ✓ 晴天陸面 (オーストラリアの砂漠)
 - ✓ 一様な水雲
 - ✓ 発達した対流雲 (Deep Convective Cloud)
- 雲の計算に必要なパラメータは、他の衛星 (Aqua,Terra/MODIS)の観測値からリトリーブ
- 誤差を軽減するため、空間的・時間的な変化の 小さいエリア(ターゲット)を選択

2012

2013

11

Result of MTSAT-2 in Feb. 2011

Number : 1025 (787+12+67+159

詳細:

http://ds.data.jma.go.jp/mscweb/data/monitoring/gsics/ vis/techinfo.html

他の衛星の似たセンサーと直接比較

- 特徴
 - 他の衛星に搭載された、特性の似たセンサーと観測値を直接比較し、
 過大/過少などの評価を行う。精度がよく知られたセンサーと比較するとよい。
- 問題点
 - 他のセンサーの応答関数は、似ていても異なる。そのため、同じ時刻・同じ場所を同じ条件(衛星天頂角、太陽天頂角等)で観測していても、観測結果は異なる。
- 解決策
 - (1)ハイパースペクトルセンサーから、応答関数を再現した観測データ を作成し、どの程度の違いになるのかを把握しておく。
 - (2)放射伝達モデルによるシミュレーションで、どの程度の違いになるのかを把握しておく。

Suomi-NPP/VIIRSと比較(2015/02/20)

(SCIAMACHYのデータを使用したNASAのツール)

http://angler.larc.nasa.gov/cgi-bin/site/showdoc?mnemonic=SBAF

	B01	B02	B03	B04	B05	B06
SCIMACHY	0.966	1.052	1.003	0.991	0.998	
RSTAR	0.975	1.051	1.002	0.991	1.004	1.000

←応答関数を考慮した場合、どれくらい の傾きになるはずか、を見積もった結果。 (1)ハイパースペクトルセンサーで応答関 数を再現して見積もる方法と、(2)放射伝 達モデルで見積もる方法がある。 13

ひまわり8号をMTSAT-2と比較

- 2つのセンサーで応答関数が違うので、同じ観測条件(場所・時間・衛星天頂角等)でも同じ観測値にはならない。
- シミュレーション結果を用いて特性の近いバンドを 選んでおく。
- 観測値同士の比較結果と、シミュレーション値同士 の結果を比較する。
- 静止衛星同士の比較は、絶対的な精度はないが、 面的な特徴を、即時的に掴むことが出来る。
- (絶対精度は、ハイパースペクトルセンサーで応答 関数を再現した方法で確認。)

#	Himawari-8 中心波長 (µm)	MTSAT-2 中心波 長(µm)
1	0.47	
2	0.51	
3	0.64 <	→ 0.68
4	0.86	
5	1.6	
6	2.3	
7	3.9 <	→ 3.7
8	6.2 🗲	→ 6.8
9	6.9	
10	7.3	
11	8.6	
12	9.6	
13	10.4 <	→ 10.8
14	11.2	
15	12.4 ←	→ 12.0
16	13.3	

シミュレーション 2012/09/28 06UTC

二次元ヒストグラムの比較

ひまわり8号:バンド15(12.4µm)

試験観測中データの仮評価。今後、処理手法 変更に伴って特性が変わる可能性がある。

MTSAT-2:IR2(12.0 μ m)

二次元ヒストグラム上の同じような範囲に点が分布。 →観測結果がシミュレーション結果と調和的

> 観測 (2015/03/14 06UTC)

シミュレーション (2012/09/28 06UTC)

横軸:MTSAT-2輝度温度

シミュレーションに使用したデータの日付は同じではない。

SIM B15-IR2

まとめ

- 気象衛星ひまわりの品質評価において、さま ざまなデータとの比較を行っている(さらに拡 充の予定)。
- ・衛星シミュレータは、ひとつのツールとして、 直接的、または間接的に利用できる。
- さまざまな手法により、多角的・総合的に評価することで、評価結果の確からしさが増す。