第47回メソ気象研究会「数値モデルによる積乱雲とその効果の表現」 東京都千代田区 気象庁講堂、2017年5月24日(水)

積雲対流の発達と 環境の安定度・水蒸気量との関係

竹見 哲也

京都大学 防災研究所

熱帯での積雲対流と湿度変動

湿度条件の違いによる対流雲の雲頂高度の違い

相対湿度と気温減率 の鉛直プロファイル

DRY2 (267ケース)とRAINY (183ケース)では中・上層が 湿潤、DRY1 (139ケース)で はかなり乾燥している

安定度を見ると、3期間の違

いはRHほどは顕著ではない。

2 (K/km).

インド洋熱帯海域での積雲対流の100 m解像度計算

- 数値モデル: WRF/ARW Version 3.3.1
- 計算領域:4段階ネスト(1-way),上端高度21 km (61層)

(Takemi 2015)

対流とその環境場の状態

TKE

Water vapor content

west_east

Range of TKE: 0 to 6.38324 m2 s-2

Horizontal cross section at 4 km

00 UTC 10 Oct 2011

west_east

相対湿度と雲量

(Takemi 2015)

中緯度メソ対流系(スコールライン)の発達条件

中/上層の湿度が同じなら、下層が湿っているほうが好都合 単純に中層のみ乾燥化すると、対流活動にはネガティブ 可降水量が多いほうが好条件

仮に可降水量が同じ条件ならば:

中層が乾燥化するとき、下層は湿っているほうが好都合

下層が乾燥化すると、中層が湿っていたとしても、好条件 にはならない

乾燥した条件の場合には、対流系の持続には下層の鉛直シ アーと冷気プールとの相互作用の効果がより重要となる

熱帯と中緯度のメソ対流系:スコールラインの場合

熱帯/海洋性と中緯度/大陸性のスコールラインの違いとは?

システムの構造

熱帯型:浅くて弱い冷気プール、弱い上昇流 中緯度型:深くて強い冷気プール、強い上昇流 浮力

熱帯型:小さい浮力、高いLNB 中緯度型:大きい浮力、低いLNB "skinny"型と"fat"型(Lucas et al. 1994)

浮カプロファイルと鉛直速度

鉛直速度 浮力 8 100 ſΔ 0 Δ 50% **Tropics** 10% 7 **Mid-latitude** 0 Δ 0 50% 6 Pressure (mb) 200 10% 50% 5 50% z (km) 10% 4 /10% 3 **ropics** 2 Mid Midlatitude latitude 0 1000 8 2 2 4 6 8 10 12 14 ю 4 0 6 -20 -15 -10 -5 10 15 5 -25 0 **Downdraft Cores** ₩ (m s⁻¹) Updraft Cores Virtual Temperature Deviation (°C) $\Delta + 10\%$ of Cores Stronger than Value Thunderstorm 0-50% of Cores Stronger than Value Project Data GATE Data (Lucas et al. 1994)

(Zipser and LeMone 1980)

スコールラインの数値実験の設定

計算領域:東西に長めの立方体領域、熱帯も対象なので上端高度も高め

格子分解能:水平500 m

物理過程:

雲微物理(Goddardスキーム、Tao et al.) 乱流混合(Deardorffスキーム) 上記以外は省略 25 km periodic 水平一様な基本場 open 境界条件: Ν 南北側面境界:周期条件 シア 東西側面境界:放射条件 S 線状 300 km W 下端境界:free slip F サーマル 上端境界: no slip + Rayleigh damping層

初期擾乱:南北に伸びる線状の温位擾乱(+ランダムノイズ)

気温減率に対する感度実験: CAPEをコントロール

- 静的安定度: θ_{tr} = 343, 348, 353, 358 K (下層q_vを調整しCAPEを固定)
- 圏界面高度を安定度に係わらず12 kmと固定
- 風速シアー:下層2.5 kmに5 m/sあるいは15 m/sの東西シアー
- 相対湿度は下層約1.5 km以外では同一

(Takemi 2007b; Takemi 2010)

		Tropopause temp changed ↓		PBL moisture changed ↓							
						CAPE					
						fixed					
	Series	Case	θ_{tr}	q_{v0}	RH_{sfc}	CAPE	CIN	LCL	LFC	LNB	PWC
		C37T43	343	16.0	73	3709	21	723	1067	12555	47.6
	$\overline{\mathrm{C17}}$	C17T43	343	13.1	60	1734	62	1116	1791	11390	44.4
CAPE	-1700	C17T48	348	14.5	66	1767	47	918	1546	11254	47.9
	-1/00	C17T53	353	16.0	73	1772	31	723	1258	11075	51.3
		C17T58	358	17.7	81	1772	15	521	889	10938	54.7
	$\overline{\mathrm{C10}}$	C10T43	343	12.1	55	1086	88	1268	2215	10303	42.8
CAPE	1000	C10T48	348	13.2	60	1061	74	1101	1931	10085	46.2
	=1000	C10T53	353	14.5	66	1064	57	918	1704	9921	49.8
		C10T58	358	16.0	73	1081	38	723	1392	9790	53.4
	$\overline{\text{C26}}$	C26T43	343	14.4	66	2634	39	931	1447	12174	46.0
CAPE	2000	C26T48	348	16.0	73	2668	25	723	1151	12129	49.4
	=2600	C26T53	353	17.7	81	2648	13	521	820	12047	52.5
		C26T58	358	19.0	87	2633	6	377	538	11970	55.2

それぞれのCASEにおいて強弱2通りのシアーを設定

(Takemi 2007b; Takemi 2010)

CAPE1700/弱いシアーの場合の水平断面: 高度5 km

CAPE1700/弱いシアーの場合の上昇流:強さと面積

w≥1m/sの上昇速度の領域平均値・最大値および占有面積率

実線:平均値 ダッシュ:最大値

(Takemi 2007b)

静的安定度への依存性

気温減率・湿度プロファイルに対する感度

スコールラインの構造や強度は、対流不安定層の気温減 率に依存する

大きな気温減率(中層が低温;中緯度型)の場合、強い降水・広域の降水となる

小さな気温減率(中層が高温;熱帯型)の場合、最大 降水強度が強くなる

気温減率が同程度の場合、可降水量が多いほど・CAPE が大きいほど、SLの発達に好都合

同程度の可降水量の場合、CAPEが大きいプロファイルの ほうが降水系の発達には好都合

同程度のCAPEの場合、可降水量が多くても降水系の発達 度が高いわけではない

感度実験:熱帯と中緯度のプロファイルの違い

	Exp series	Temperature	相対湿度	初期擾乱		
	TROPICS-W	熱帯型	熱帯型	サーマル		
	TROPICS-C	熱帯型	熱帯型	冷気プール		
	MIDLATD-W	中緯度型	中緯度型・乾燥	サーマル 冷気プール サーマル		
	MIDLATD-C	中緯度型	中緯度型・乾燥			
	MIDLATM-W	中緯度型	中緯度型・湿潤			
Height (m)	TROPIO 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 300 320 34	SとMIC 第 16 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -2 0		こなるように設定 CAPEの鉛直分布		
DPRI-KU	Potential T	emperature (K	θ' (Κ)	(Takemi 2014)		

様々なシアー条件での平均降水強度と最大降水強度

様々なシアー条件での最大上昇流

(Takemi 2014)

上昇流の強さと占有面積

鉛直シアー:10 m/s / 0-5 km

まとめ:積雲対流と安定度・水蒸気量との関係

平均降水強度・上昇速度は、気温減率が大きくなるほど 強くなる。

CAPE(地上気塊に対する)が同程度でも気温減率が異なる場合=浮力プロファイルが異なる

浮力が大きい→強い上昇流→混合を受けにくい→広い上昇流域→ 強い系

浮力が小さい→弱い上昇流→混合を受けやすい→狭い上昇流域→ 弱い系

気温減率が同じならば、CAPEの鉛直分布の違いによって 降水特性が決まる

CAPEの鉛直分布が同程度ならば、気温減率が大きいほう が強い系、強い降水が発達する

湿潤環境ならば、初期擾乱に対する感度は顕著ではなく なる

より現実的な問題設定による数値実験

日変化

陸上 vs 海上

水平方向の不均一性

外的強制

大規模場の擾乱

地形

超高解像度実験

Large-eddy simulation

