第51回メソ気象研究会・台風研究連絡会・第6回観測システム・予測可能性研究連絡会 第12回気象庁数値モデル研究会

2019/5/14 気象庁講堂

台風進路予測に残された課題 京都大学防災研究所/JAMSTEC APL 榎本剛 @takeshi enomoto

本研究はJSPS科研費JP26282111の助成を受けたものです。

- ・近年の台風予測誤差の改善
- ・渦としての台風
- ・初期値かモデルか
- ・波浪・海洋の重要性

2030年の科学技術を見据えた 気象業務のあり方(提言)

台風の3日先の進路予測誤差を 100km 程度

2030年には、数値予報技術の大幅な高度化により、 (現在の1日先の予測における誤差程度)にまで改善

台風進路予測の重要性

進路予測精度の向上

進路のメカニズムの理解の進展

進路予測誤差が 大きい事例

メソスケール構造

発生・強度予報

防災上の重要性

3日進路予報誤差のばらつき

Yamaguchi et al. 2017

Axisymmetric steady state model

 $M \equiv rV + \frac{1}{2}fr^2$

v tangential wind

Above PBL Hydrostatic $\frac{\partial p}{\partial z} = -\rho g$ Gradient wind $\frac{1}{\rho} \frac{\partial p}{\partial r} = \frac{V^2}{r} + fV$

Emanuel 1986

Rankin渦

2

3

中心付近が剛体回転

航空機観測

Mallen and Montgomery 2005

Advection of a Gaussian Hill

Dispersion

Dissipation

Quasi-cubic Interpolation

Ritchie et al. 1995

Bicubic Interpolation

Derivatives

- Finite difference
- Prediction (CIP)
- Fourier/Legendre transform

Spectral bicubic interpolation

Derivatives from harmonics

- Simple
- Accurate
- Compact

Enomoto 2008

Over/under-shootings

Spectral bicubic TI19 CFL=5.2 filter+fix

CFL=1.0 unlimited

Mixing properties

台風は渦

- ・台風を順圧のRankin渦で近似し、発達・減衰を無視すれば、 絶対渦度保存則に従う。
- ・ Rankin 渦のようなシャープな構造を維持するには、 精度の高い移流スキームが必要
- ・単調性や混合特性にも注意が必要。

- Workshop on the Partial Differential Equations on the sphere 2019 28 Apr-3 May 2019, Montréal, Québec, Canada
- ・ ECMWF, NCEPは有限要素法 (FV) へ
- ・スペクトル法はスケーリングが良く、通信のコストも 悪くないとの報告や高速ルジャンドル変換の発表も
- ・時間積分法の工夫:時間方向並列化,指数積分など
- ・ その他AMRやエネルギー保存性など。Cubed-sphereが復権している印象

力学コアの動向

Cross analysis-model experiments

Lupit 2009

Operational

Best Track Best track NECP MA ECMWF NCEP

NCEP GSM T382L64

Sensitive to IC insensitive to model

T. Miyachi

initial: 12 UTC 21 October

Parma 2009

JMA GSM T319L60

Operational

NCEP GSM T382L64

Positional error

NCEP excludes April, May and September

NW Pacific 2009

201303 Yagi

6/9 12 UTC

初期時刻6/8 12 UTC

ECMWF TL1279L91 (~16km) NCEP T574L64 (~27km) JMA TL959L60 (~20km)

6/10 12 UTC

Sensitivity to model resolution

- OpenIFS Cy40r1v2, TL159, 255, 511, 1279L60, T1279L91
- Initial condition: ECMWF operational analysis
- Initial time: 12UTC, 9 June 2013
- Time step: 3600 s (TL159L60), 2700 s (TL255L60), 1200 s (TL511L60), 600 s (TL1279L60, 91)
- Kyoto University Supercomputer System A (Xeon Phi Knights) Landing)

700 hPa stream function

Init: 12 UTC, 9 June 2013

CONTOUR FROM -36 TO 54 BY 2

FT24

TL1279L91-TL511L60 TL1279L91-TL159L60 2013060912+FT24 dstf x 1e6 m2/s 2013060912+FT24 0 130E 140E 150EI20E 140E CONTOUR FROM -2 TO 3.2 BY .2 CONTOUR FROM -1 TO 1.6 BY .2

Axisymmetric vorticity

Axis non-symmetric winds

(u',v') m/s 1000:700hPa

TL159L60 1000:700hPa

TL1279L60 FT42 1000:300hPa

2013060912+FT42

2013060912+FT42

Tropical cyclone as a Carnot heat engine

ocean

radiation

Emanuel 1986

結合の効果

Ito et al. 2015

Sea-surface flux

RTG SST HR

w WAM

FT24

w/o WAM

difference

Axis non-symmetric winds

TL1279L91

w WAM

(u',v') m/s 1000:300hPa

The physical processes that were previously considered to be "minor" have become "substantial"

-Kosuke Ito and Chun-Chieh Wu

9th IWTC topic 2.1 report

- ・高解像度、高精度で高度な力学コアが必要
- ・指向流となる環境場を正しく再現した上で、 鉛直構造を再現することが必要→非断熱過程
- ・台風の力学には、放射(→雲)や波浪や海洋との結合が本質的
- ・非軸対称構造や境界層、メソスケール構造

まとめ

・ 台風は1000 kmスケールの風というよりは、高々100 km程度の渦