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Predictability of TC intensification: onset is challenging

(a) TC Intensity Forecast Bias
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(Minamide & Posselt, 2025, QJRMS)



Limited predictability of intensification onset

9 Thermodynamic process contributes to vortex alignment

to initiate rapid intensification. (Rios-Berrios et al,, 2018; Stone
et al., 2023)

9 Large prediction uncertainty is induced by chaotic nature
of moist convection. (Zhang & Tao, 2013)

.......................................................

i ¢ J & 3 ’\ N ‘” : , 'l: : . ) <'"‘ v ol y )
“ S CibleR H 1S 5 D bk A gl 1
| e ) o (7 IRRE | - (o] AP 2 s oAl : : : :
Pt = Tl AR | T N : : : : : : : :
¢ ' (Q\’% ; : Q)M QU S T ) ) 1 ; ' ; ; (Zhana and Tam 2012 IARQ)

Impacts of moist convection are key to better ¢ Hard to capture/reproduce/predict
understand/predict intensification onset. the individual convective activity
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Today’s outline

Part 1. Data Assimilation Methodology Development

1. Adaptive observation error inflation (AOEI)
- Minamide, M., and F. Zhang, 2017: Adaptive Observation Error Inflation for Assimilating All-sky Satellite Radiance, MWR, 145,1063-1081

2. Adaptive background error inflation (ABEI)

- Minamide, M., F. Zhang, 2018: An Adaptive Background Error Inflation Method for Assimilating All-sky Radiances, Q/RMS, doi:10.1002/qj.3466

Part 2. Forecast Improvement Assessment

3. Tropical cyclones applications:
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and Prediction of Tropical Cyclones, GRL, 43 I
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- Minamide, M., D. J. Posselt, 2025: Improving tropical cyclone intensification prediction using high-resolution all-sky Geostationary

Part 3. all-sky satellite DA to explore convective predictability

4. Insights for convective signals:

- Minamide, M., D. J. Posselt, 2022: Using Ensemble Data Assimilation to Explore the Environmental Controls on the Initiation and Predictability of Moist
Convection, Journal of the Atmospheric Sciences, doi:10.1175/JAS-D-21-0140.1.



Real-data Experimental settings for TCs

D1

Advanced PSU WRF-EnKF (APSU) DA system
(Weng and Zhang, 2016; Zhang, Minamide and Clothiaux, 2016) 30°N

Model: WRF ver.3.6.1(Skamarock 2008), CRTM (Han et al. 2006)

20°N

Ensemble-based data assimilation system (60-1024 ensemble)

Regional convective-permitting model
- Resolution: 27,9 & 3 km (D1-D3)

10°N

Error modeling oW
- Adaptive Observation Error Inflation (AOEI) (Minamide & Zhang, 2017, MWR)
- Adaptive Background Error Inflation (ABEI) (Minamide & Zhang, 2019, QJRMS)

All-sky infrared BT (ch8: 6.19 um); 15 minutely — 1 hourly
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(a) Observation (b) APSU(BT+conv) (c) APSU(conv)
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Hurricane-seasonal analysis of TC intensity forecast

[TC intensity fct RMSE [ TC intensity fct Bias ]
— OFCL - 40 _ © ~20% RMSE reduction
APSU (conv) i ) . .
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Forecast Time Forecast Time

(Minamide & Posselt, 2025, QJRMS)



10

Today’s outline

Part 1. Data Assimilation Methodology Development

1. Adaptive observation error inflation (AOEI)
- Minamide, M., and F. Zhang, 2017: Adaptive Observation Error Inflation for Assimilating All-sky Satellite Radiance, MWR, 145,1063-1081

2. Adaptive background error inflation (ABEI)

- Minamide, M., F. Zhang, 2018: An Adaptive Background Error Inflation Method for Assimilating All-sky Radiances, Q/RMS, doi:10.1002/qj.3466

Part 2. Forecast Improvement Assessment

3. Tropical cyclones applications:

- Zhang, F., M. Minamide, E.E. Clothiaux, 2016: Potential Impacts of Assimilating All-sky Satellite Radiances from GOES-R on Convection-Permitting Analysis
and Prediction of Tropical Cyclones, GRL, 43

- Minamide, M., F. Zhang, 2018: Assimilation of All-sky Infrared Radiances from Himawari-8 and Impacts of Moisture and Hydrometer Initialization on
Convection-Permitting Tropical Cyclone Prediction, MWR, 146 ,3241-3258

- Minamide, M., F. Zhang, E.E. Clothiaux, 2020: Nonlinear Forecast Error Growth of Rapidly Intensifying Hurricane Harvey (2017) Examined through
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Part 3. Exploring convective predictability

' 4. Insights for convective signals:

|
1 - Minamide, M., D. J. Posselt, 2022: Using Ensemble Data Assimilation to Explore the Environmental Controls on the Initiation and Predictability of Moist
: Convection, Journal of the Atmospheric Sciences, doi:10.1175/JAS-D-21-0140.1.



Case: convections on 06/11/2017 during CPEX
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EnKF Performances of All-sky Satellite DA (MCS case)

EnKF Analysis EnKF Analysis
(all-sky BT+conv.) (conv. only)

GOES-16 obs.

-
22°N
=
94 W 92°W 20°W 88°W R 92°W 0°W 88°w
180 200 220 240 260

GOES-16 chl0 Brightness Temperature (7 34 uym) (K)

[2017-06-11_12:00]

(Minamide & Posselt, 2022, JAS)
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How to find signals of convection?

EnKF Analysis
(all-sky BT+conv.

-

Eulerian approach

Vertical wind at the specific DR
timing and location

What are the key signals to determine exactly when and where convection occurs?

(Minamide & Posselt, 2022, JAS)
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Eulerian correlation analysis

[ corr{Qv at 500hPa, w(300-500hPa average) at star at 18Z/11} ]

(a) Corr(Q at S00 hPa, w) (b) Corr(Q (2000km>L>200km), w)

(c) Corr(Q (200km>L>20km), w)

i L 1
-0.25% -0.20 -0.15% ~-0.10 -0.05 000 005
Correlation

9 Meso-a shows the correlation with general MCS development, which enhances
convective activity but does not determine the exact location & timing.

© Meso-y & -B scale structures are noisy. (Minamide & Posselt, 2022, JAS)
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Lagrangian approach to find convective signals

EnKF Analysis
(all-sky BT+conv.

Lagrangian approach

Compositing the convection

Vertical wind at the specific

timing and location centers
B _31%\’0
. : -,
180 200 220 240 260 280 300

GOES-16 chl0 Brightness Temperature (7.34 um) (K)

(Minamide & Posselt, 2022, JAS)
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Lagrangian correlation analysis (lag-time ensemble)

corr{Qv at 500hPa, w(300-500hPa average) at composite convective peak ]

{a) Corr(Q at 500 hPa, w) {b) Corr(Q (2000km>L>200km), w) {c) Corr(Q {200km>L>20km), w) {d) Corr(Q (20km>L>2km), w)
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time: -120 min [«=——— Relative to convective peak time

9 Information that determines the exact position & timing of convective occurrence is
in meso-P & -y scales (< 30 mins) . (Minamide & Posselt, 2022, JAS)
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Eulerian limitation to capture convective scale features

(a) 16 ensemble member (b) 64 ensemble member
SRS D V| Ty & R wr. o - T

g corr{Qv at 500hPa, h
w(300-500hPa
average) at star}

£ 5/ 49 Larger ensemble helped
to reduce noises even
for convective scales

|9 "True” correlation

| structures (~ convective
signals) was still not

» clear with thousands
“025  -020 015  -000 -005 000 o . . . - ensembles.

Ensemble Correlation

512 ens
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Why Eulerian approach is limited?

Mean vertical wind (300-500 hPa)

Samples from Lagrangia
(convection-relative)
method

Samples from '
Eulerian method{| ., <8

0 2 4 6 8
Water vapor mixing ratio (g kg-1)

30

| o5 [ Original samples for correlation calculation J

>0 9 Due to the chaotic nature of convection,
only small part of ensemble captured the
15 convection at the exact location

¢ Necessity to further constrain convective
activity for ensemble-based DA

-5 - Potentially, denser observation with
more frequent DA cycle and/or finer
-0 model resolution
-5

(Minamide & Posselt, 2022, JAS)
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Eulerian vs. Lagrangian: TC example
[ corr{T at 500hPa, T (synthetic observation) ]

Ensemble Correlation (Obs T at 23.71, 136.25, z=20) N>=10

f AV 1 T L T 1
o . ~
vl Eulerian

1.00

s e @ Obs I | ‘

Ot T ir=1.0, 620, 220} vs Model: T (2»20)

e Ens centers Lagra ngian v J : \‘
g . el LT BestTrack center . '
approach [/ .o TUFL o approach
on | : | i — i r i_ I . S e
o LA gy o .- L2 < = 0.50
Bl et D), ] e e W k 2
N R . T -"_I! ~ . £, ' _______ [ os
gﬁ SNCE N il S . Storm-relative
ol 1 AR S ( i Looo - RMW-normalized
: | “‘ coordinate

L] k-, |.I - ! __I 3 b 4 - . . T
i i - —0.25 " RS S Uy
. e, y ’ -y Yo
24°N foooooeo- R Sl L T SRR . »- ¢
- : / p
e 9 -

—0.50

d b -1 =R ) '-'_f;
225N |ooo 1 B S N s e I PR s o - 4  A
| | = y i ! Virtual observation
: i ) : R . ¢
: . s B’ | b -

A
L
o
4
- 4

~1.00 < T SRMW >

129°E 130.5°E 132°E 133.5°E 135°E 136.5°E 138°E

(Kubo and Minamide, submitted)
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summary

¢ With Adaptive Observation Error Inflation (AOEI) and Adaptive Background Error
Inflation (ABEI), the promising positive impacts of assimilating all-sky BTs, in particular
from new-generation geostationary satellites GOES-16 (and Himawari-8), on TC
forecasts are demonstrated through the seasonal analysis on 2017 Atlantic hurricanes.

© Using the ensemble forecast constrained by all-sky satellite DA, we investigated the the
convective predictability and necessity conditions for future observations to capture
exactly when and where moist convection occurs: Meso-f (200-20km) to meso-y (20-
2km) scale information within less than 10-minute frequency will be indispensable.

Minamide, M., D. J. Posselt, 2022: Using Ensemble Data Assimilation to Explore the Environmental Controls
on the Initiation and Predictability of Moist Convection, Journal of the Atmospheric Sciences,
doi:10.1175/JAS-D-21-0140.1.

Minamide, M., D. J. Posselt, 2025: Improving tropical cyclone intensification prediction using high-resolution
all-sky Geostationary Operational Environmental Satellite data assimilation, Quarterly Journal of the Royal
Meteorological Society, doi:10.1002/qj.4958.

Thank you very much for your attention. (minamide@hydra.t.u-tokyo.ac.jp)
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